12 research outputs found

    Frequency domain synthesis of trajectory learning controllers for robot manipulators

    No full text
    Trajectory learning control is a method for generating near to optimal feedforward control for systems that are controlled along a reference trajectory in repeated cycles. Iterative refinements of a stored feedforward control sequence corresponding to one cycle of the control trajectory is computed based upon the recorded trajectory error from the previous cycle. Several learning operators have been proposed in earlier work, and convergence proofs are developed for certain classes of systems, but no satisfactory method for design and analysis of learning operators under the presence of uncertainties in the system model have been presented. This article presents frequency domain methods for analysing the convergence properties and performance of the learning controller when the amplitude and phase of the system transfer function is assumed to be within specified windows. Experimental results with an industrial robot manipulator confirm the theoretical results

    Modelling and Compensating Measurement Errors Caused by Scattering in Time-Of-Flight Cameras

    Get PDF
    Recently, Range Imaging (RIM) cameras have become available that capture high resolution range images at video rate. Such cameras measure the distance from the scene for each pixel independently based upon a measured time of flight (TOF). Some cameras, such as the SwissRanger™ SR-3000, measure the TOF based on the phase shift of reflected light from a modulated light source. Such cameras are shown to be susceptible to severe distortions in the measured range due to light scattering within the lens and camera. Earlier work induced using a simplified Gaussian point spread function and inverse filtering to compensate for such distortions. In this work a method is proposed for how to identify and use generally shaped empirical models for the point spread function to get a more accurate compensation. The otherwise difficult inverse problem is solved by using the forward model iteratively, according to well established procedures from image restoration. Each iteration is done as a sequential process, starting with the brightest parts of the image and then moving sequentially to the least bright parts, with each step subtracting the estimated effects from the measurements. This approach gives a faster and more reliable compensation convergence. An average reduction of the error by more than 60% is demonstrated on real images. The computation load corresponds to one or two convolutions of the measured complex image with a real filter of the same size as the image

    Modelling and Compensating Measurement Errors Caused by Scattering in Time-Of-Flight Cameras

    Get PDF
    Recently, Range Imaging (RIM) cameras have become available that capture high resolution range images at video rate. Such cameras measure the distance from the scene for each pixel independently based upon a measured time of flight (TOF). Some cameras, such as the SwissRanger™ SR-3000, measure the TOF based on the phase shift of reflected light from a modulated light source. Such cameras are shown to be susceptible to severe distortions in the measured range due to light scattering within the lens and camera. Earlier work induced using a simplified Gaussian point spread function and inverse filtering to compensate for such distortions. In this work a method is proposed for how to identify and use generally shaped empirical models for the point spread function to get a more accurate compensation. The otherwise difficult inverse problem is solved by using the forward model iteratively, according to well established procedures from image restoration. Each iteration is done as a sequential process, starting with the brightest parts of the image and then moving sequentially to the least bright parts, with each step subtracting the estimated effects from the measurements. This approach gives a faster and more reliable compensation convergence. An average reduction of the error by more than 60% is demonstrated on real images. The computation load corresponds to one or two convolutions of the measured complex image with a real filter of the same size as the image

    The mechanism of DNA repair by uracil-DNA glycosylase: Studies using nucleotide analogues

    No full text
    2',4'-Dideoxy-4'-methyleneuridine incorporated into oligodeoxynucleotides forms regular B-DNA duplexes as shown by Tm and CD measurements. Such oligomers are not cleaved by the DNA repair enzyme, UDG, which cleaves the glycosylic bond in dU but not in dT nor in dC nucleosides in single stranded and double stranded DNA. Differential binding of oligomers containing carbadU, 4'-thiodU, and dU residues to wild type and mutant UDG proteins identify an essential role for the furanose 4'-oxygen in recognition and cleavage of dU residues in DNA
    corecore